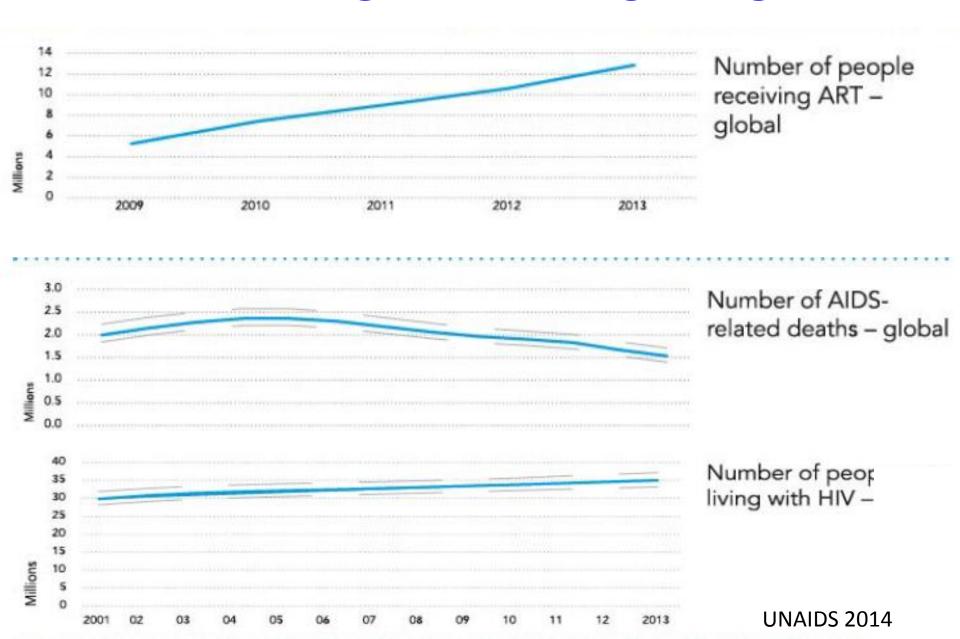


Metabolic Complications over a lifetime

Amita Gupta MD MHS
Associate Professor of Medicine and International Health
Center for Clinical Global Health Education
Johns Hopkins University
agupta25@jhmi.edu

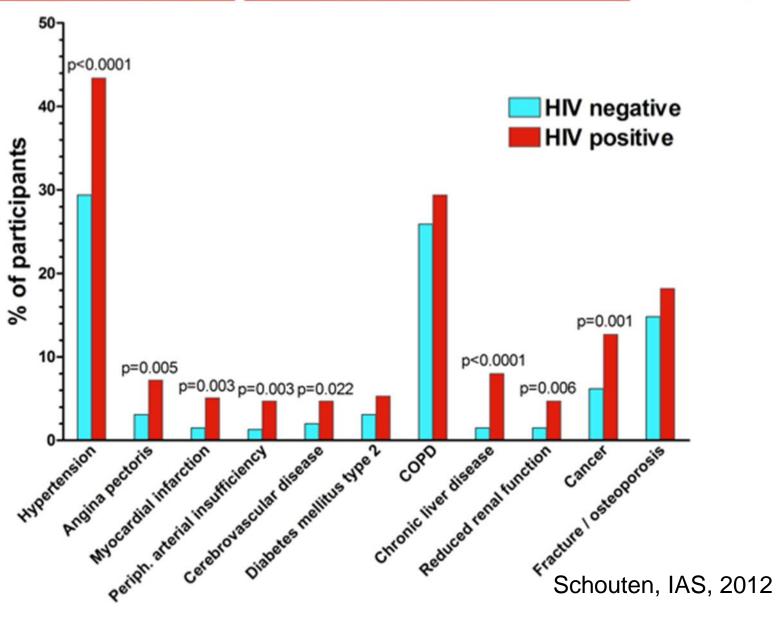
Disclosures


- I receive grant funding from the
 - US NIH (NIAID, NICHD, Fogarty, CFAR)
 - US CDC
 - Indian Department of Biotechnology and Indian Council of Medical Research
 - Foundations (Gilead, Wyncote, Ujala, Gates)
 - Mylan
- Any opinions expressed are my own and not of any of my sponsors.

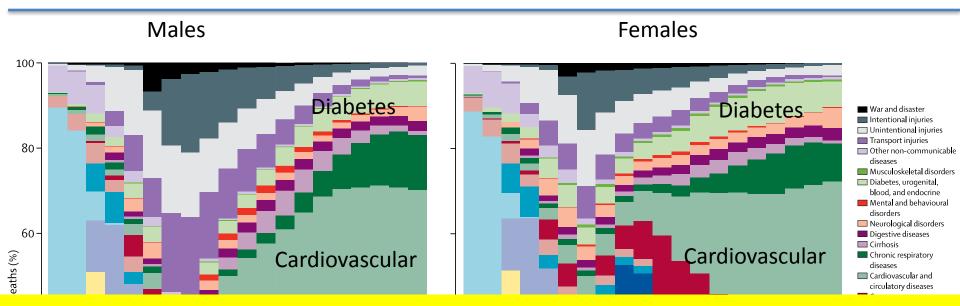
Roadmap

- Burden of chronic diseases
- Body Composition Changes
- Cardiometabolic
 - Insulin resistance and diabetes mellitus
 - Dyslipidemia
- Inflammation

Increasing ART, Living Longer

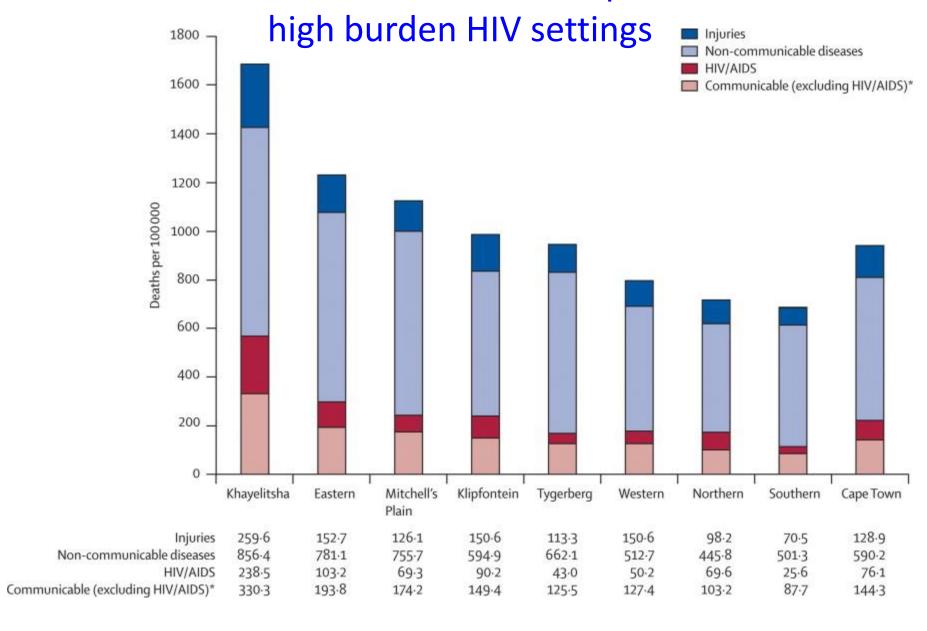


Diseases more Common Among HIVinfected Persons in High-Income Settings


- Lipodystrophy
- Cardiovascular Disease
 - (1.8 fold increased risk MI- Triant JCEM 2007)
- Diabetes Mellitus
 - (4-fold increased risk Brown Arch Int Med 2005)
- Cancer
- Kidney Problems
- Cognitive Problems
- Osteoporosis
- Low Testosterone
- Fraility

Comorbidity distribution

WHO Global Burden


Non-communicable diseases (NCDs) cause about two-thirds (or 36 million of the 57 million deaths annually in the world.

About 80 percent of the NCDs deaths occur in low- and middle-income countries.

Nearly 30 percent of those deaths are in people under age 60.

Lozano Lancet 2012

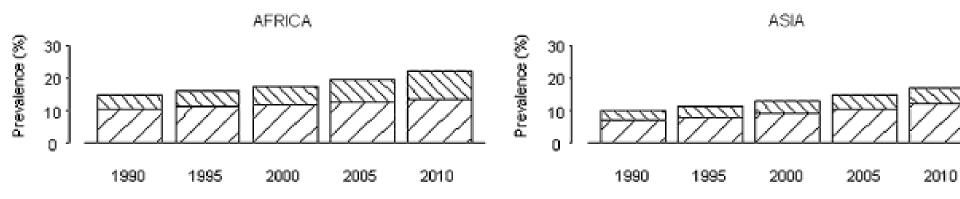
Non-communicable deaths are important even in

Population-based prevalence of Diabetes in Africa

Kengne AP, et al. Heart 2013;99:979–983. doi:10.1136/heartjnl-2012-303316

Table 1 Selected population-based prevalence studies on diabetes in Africa, 2002–2012

							Prevalence	of diabetes (%)	
Study	Country	Sample	Sampling	Setting	Age (years)	Diagnosis	Overall	Men	Women	Undiagnosed
Evaristo-Neto ¹¹	Angola	421	Random	Rural	30–69	OGTT	2.8	3.2	2.7	_
Echouffo-Tcheugui ¹⁵	Cameroon	1591	Self-selected	Urban	43.7	FBG	15.3	13.7	17.0	6.3
Katchunga ¹⁷	DRC	424	Random	Urban	53.3	RBG	4.7	_	_	1.0
Katchunga ¹⁷	DRC	245	Random	Rural	58.5	RBG	2.9	_	_	1.6
Ploubidis ¹⁸	Kenya	2959	Random	Rural	64.7	RBG	5.1	_	_	_
Ploubidis ¹⁸	Kenya	1437	Random	Urban	60.8	RBG	10.1	_	_	_
Ejim ¹³	Nigeria	858	Random	Rural	59.8	FBG	4.4	7.3	3.3	_
Duboz ¹²	Senegal	600	Random	Urban	>20	FBG	17.9	14.0	21.8	16.2
Peer ¹⁰	South Africa	1099	Random	Urban	43.3	OGTT	12.1 (13.1)	10.2 (11.3)	13.8 (14.7)	4.9
Erasmus ⁹	South Africa	642	Random	Urban	50.9	OGTT	28.2 (26.3)			18.1
Baragou ¹⁶	Togo	2000	Random	Urban	39	2 FBG	7.3	6.9	7.3	_
Nsakashalo-Senkwe ⁵⁴	Zambia	1928	Random	Urban	<u>></u> 25	FBG	2.7	_	_	_
Hammami ¹⁴	Tunisia	598	Random	Urban and rural	72.3	RBG	27.4	29.2	26.5	_
Chamie ²⁰	Uganda	2283	Self-selected	Urban	35	RBG	3.5	_	-	0.8


Figures within parenthesis are age-adjusted.

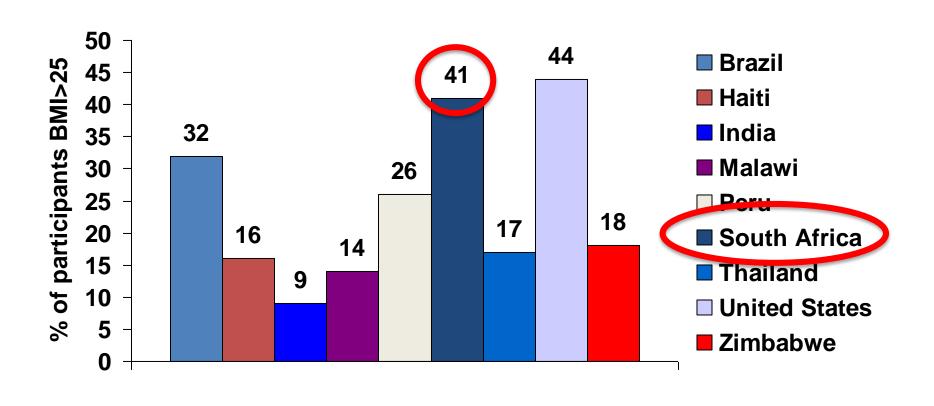
FBG, fasting blood glucose; OGTT, oral glucose tolerance test; RBG, random blood glucose.

Diabetes Prevalence 3-28%

Obesity not just a CVD risk factor in the West

OVERWEIGHT AND OBESITY IN PRESCHOOL-AGE CHILDREN

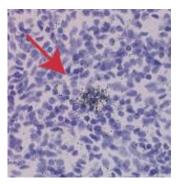
8.5% Children in Africa Overweight/Obese


Obesity not just a CVD risk factor in the West

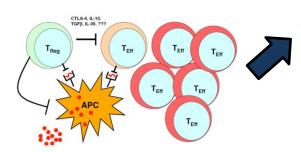
Kengne AP, et al. Heart 2013;99:979–983. doi:10.1136/heartjnl-2012-303316

						Obesity	(%)		Overwei	ght (%)		Abdomin	al obes	ity (%)
Study	Country	Sample	Sampling	Setting	Age (years)	Overall	Men	Women	Overall	Men	Women	Overall	Men	Women
Fouda ⁵⁵	Cameroon	552	Random	Urban	34.5	23.4	17.8	36.1	49.1	51.7	43.2	35.2	19.8	69.8
Sani ⁵⁶	Nigeria	300	Convenient	Urban	37.6	21.3	10.9	29.2	32	_	-	43.7	12.4	67.3
Ejike ²⁸	Nigeria	1584	Random	Urban	21.8	1.3	0.4	2.5	19.4	17.1	22.3	7.5	1.3	16.1
Ejim ¹³	Nigeria	858	Random	Rural	59.8	30	21.1	33.6	-	_	-	31	2.4	42.6
Wahab ⁵⁷	Nigeria	300	Convenient	Urban	_	21	9.3	29.8	53.3	41.9	62	_	_	_
Okafor ²⁹	Nigeria	898	Random	Urban	48.7	21.2	_	-	40.4	_	-	66.5	_	_
Mkhonto⁵⁵	South Africa	532	Convenient	Rural	45.9	24.4	9.6	29.6	26.1	17.7	29.0	-	_	-
Malaza ⁴¹	South Africa	14 198	Convenient	Rural	>15	45.7	15.9	45.7	23.3	31.3	4.9	_	_	_
Baragou ¹⁶	Togo	2000	Random	Urban	39	25.2	16.7	32.2	_	_	_	_	_	_
Mayega ²⁷	Uganda	1656	Random	Rural	44	5.3	2.2	8.2	12.3	7.5	16.9	13.8	1.4	24.5
Rudatsikira ⁵⁹	Zambia	1928	Random	Urban	_	14.3	5.1	18.6	_	_	_	_	_	_

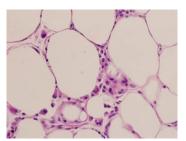
Obesity 1-46% Overweight 12-53% Abdominal Obesity 14-66%


ACTG 5175: Proportion of HIV infected adults initiating ART who were overweight or obese (BMI>25) by country

Country


Unpublished data
Campbell PLOS Med 2011

HIV production HIV replication



Loss of regulatory cells

HIV-associated fat Metabolic syndrome

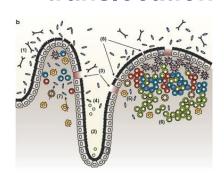
Inflammation

↑ Monocyte activation
↑ T cell activation

Dyslipidemia

Hypercoagulation

Co-morbidities
Aging


CMV Excess pathogens

Microbial translocation

S. Deeks, 2013

HIV-associated Metabolic Syndrome Body Composition

Lipoatrophy

Lipodystrophy

Mixed Lipodystrophy

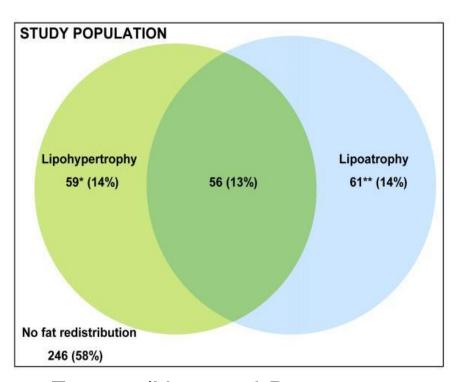
Lipoatrophy

Children

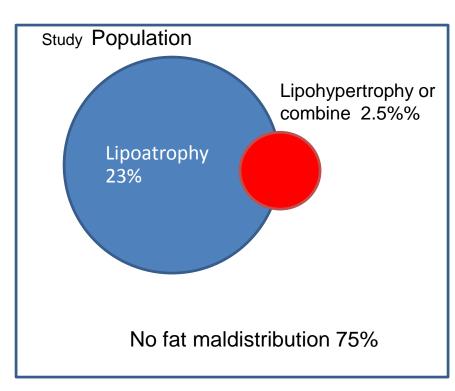
Adults

Lipohypertrophy

Children



Brown Nat Rev Endocrin 2012


	Lipoatrophy	Lipodystrophy
Adipose tissue	Subcutaneous loss	Abnormal visceral gain
Affected areas	Face, buttock, leg,	Abdomen, dorsocervical,
	arms	liver, muscle
Social sequalae	Stigma, ↓ QOI	L, ∲ Adherence
Clinical Sequalae	Insulin resistance, dyslipi	idemia, inflammation
ART Risk factors	tNRTIs d4T>AZT cumulative/dose Older PIs (nelfinavir)	PIs
Other risk factors	Puberty, genetics, age, male sex, advanced HIV	Age, male sex, more advanced HIV
Pathogenesis	Mitochondrial toxicity Adipocyte apoptosis	Dysregulaton of free fatty acid metabolism

Body fat abnormality in HIV-infected children and adolescents: *The difference of regions*

Europe (N= 426, LD = 42%) Receiving PI 60%, Received d4T 10%

Alam NM. J Acquir Immune Defic Syndr. 2012 March 1; 59(3): 314–324

Thailand, N=202, LD = 25% Receiving PI 41%, Received d4T 60%

Sawawiboon N. International Journal of STD & AIDS 2012; 23: 497–501

Courtesy of Chokephaibukit, IAS 2013

Patient 1

2 months

24 months

Patient 2

30 months

45 months

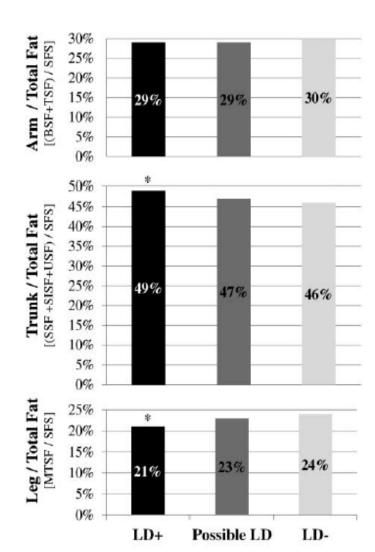
Figure 1 The serial photos of two children who had improvement of facial lipoatrophy after stopping stavudine (d4T)

Facial lipoatrophy Is it reversible?

Facial Lipoatrophy may improve after stopping d4T

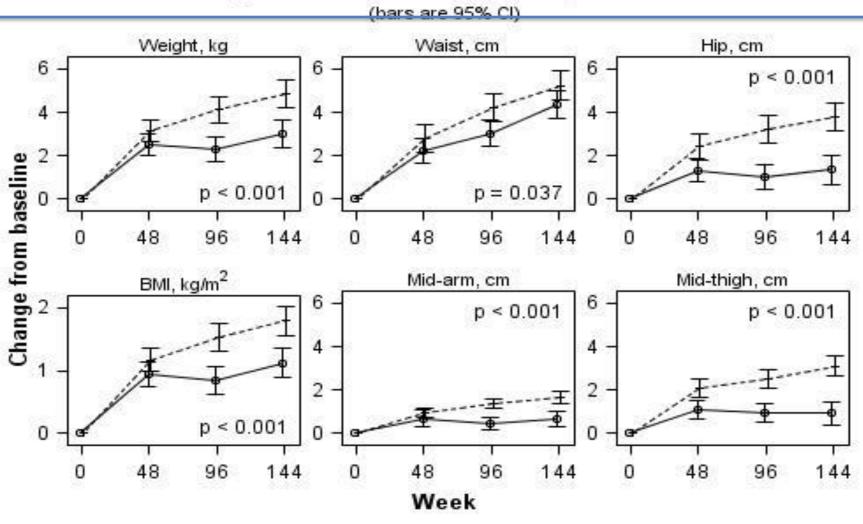
Improvement found in 23%, at mean duration of 45 months after stopping d4T, around early adolescence

Need to stop d4T before reaching adolescence


Sawawiboon N. International Journal of STD & AIDS 2012; 23: 497–501

Courtesy of Chokephaibukit, IAS 2013

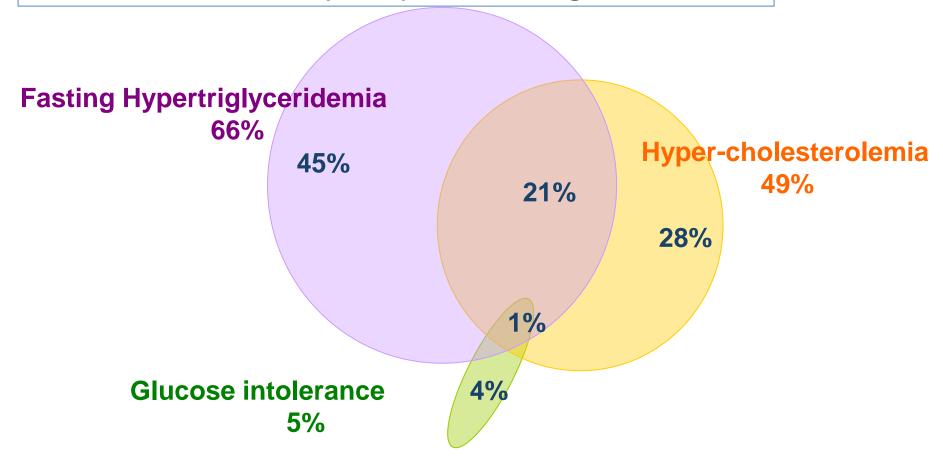
Lipodystrophy prevalence


NEVEREST trial (South Africa)

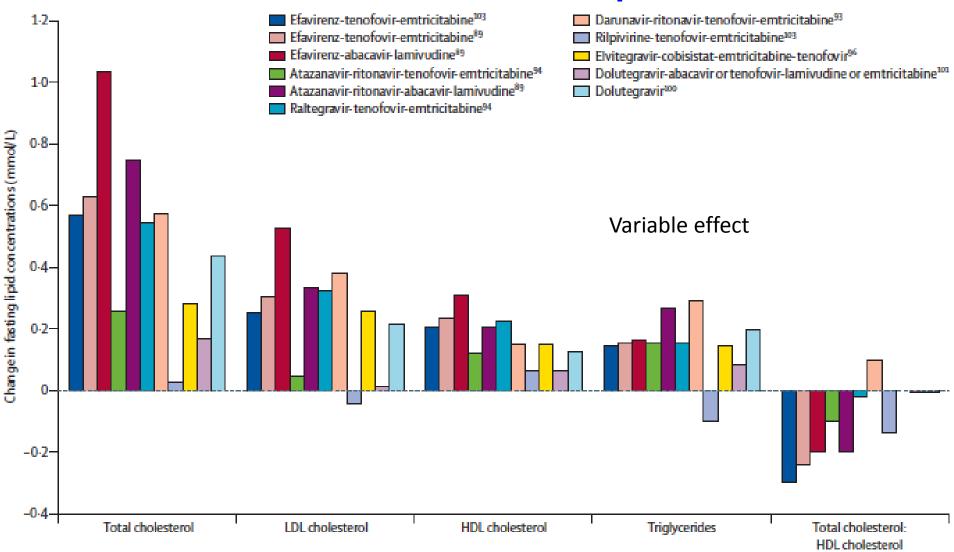
- Suppressed on LPV/r then randomized to stay on LPV/r or switch to NVP
- Mean age 5 years at assessment
- mean time on ART: 4 years
- Lipids, anthropometrics, markers
- Higher Lipids (TC, LDL, TG) with LPV/r
- 8.4% had lipodystrophy


A5175 Treatment effects AZT vs TDF

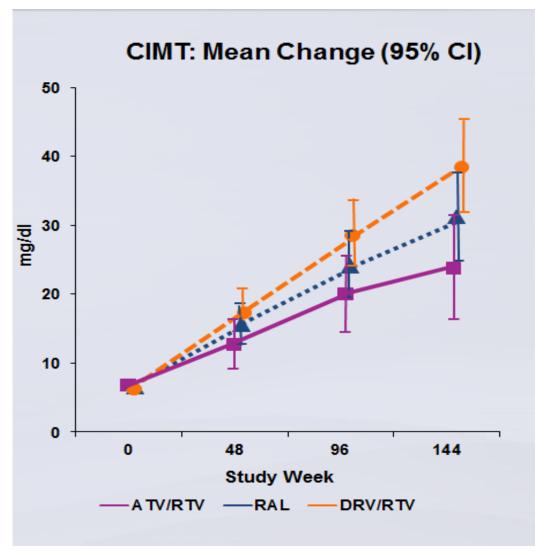
Mean Change from Baseline in Anthropometric Measures


Table 1 Treatment strategies	for adinose tissue changes i	n HIV-infected individuals
Strategy	Effect	Comments
Lipoatrophy	Ellow	
Switching antiretroviral therapy	Modest effect	Switching from stavudine or zidovudine to abacavir or tenfovir disoproxil fumarate; best available strategy for lipoatrophy
Thiazolidinediones	Modest effect	Effect not clinically significant; availability of rosiglitazone limited due to increased risk of cardiovascular disease; pioglitazone associated with decreased levels of triglycerides, increased levels of HDL cholesterol, slight increased levels of LDL cholesterol
Pravastatin	No effect	NA
Uridine	No effect	NA
Facial fillers	Clinically significant effect	Potential adverse effects include fat hypertophy with autotransplatation, skin nodules with resorbable fillers and local infections with permanent fillers
Leptin	Unclear	No effect on peripheral adipose tissue, but may improve insulin resistance and dyslipidemia
Lipohypertrophy		
Switching antiretroviral therapy	No effect	Overall, no benefit except for switching from lopinavir plus ritonavir to atazanavir plus ritonavir in one small study
Lifestyle changes	Modest effect	NA
Metformin	Modest effect	May worsen lipoatrophy
Growth hormone	Clinically significant effect	Rejected by FDA because of safety concerns
Tesamorelin	Clinically significant effect	FDA-approved in 2010; long-term benefits and risks unclear
Liposuction (dorsocervical fat pad)	Clinically significant effect	Can reaccumulate

Dyslipidemia

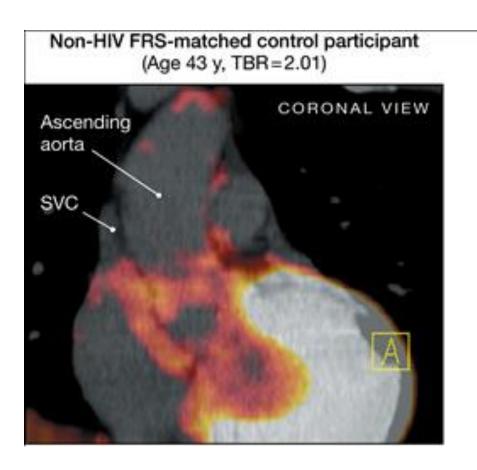

Dyslipidemia found 40%-80% in children, associated with receiving Pl and lipodystrophy¹⁻³

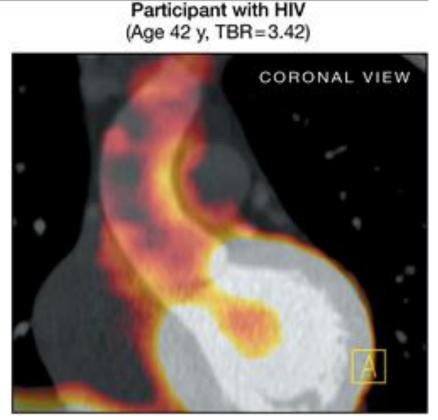
Prevalence of Dyslipidemia in a European cohort of HIV-infected children and adolescents (N=426), 60% receiving PI⁴



1.Lapphra K. J Med Assoc Thai. 2005. 2. Taylor P. Pediatrics 2004. 3. Amaya RA. Pediatr Infect Dis J. 2002, 4. Alam NM. J Acquir Immune Defic Syndr. 2012 March 1; 59(3): 314–324

ART Effect on Lipids



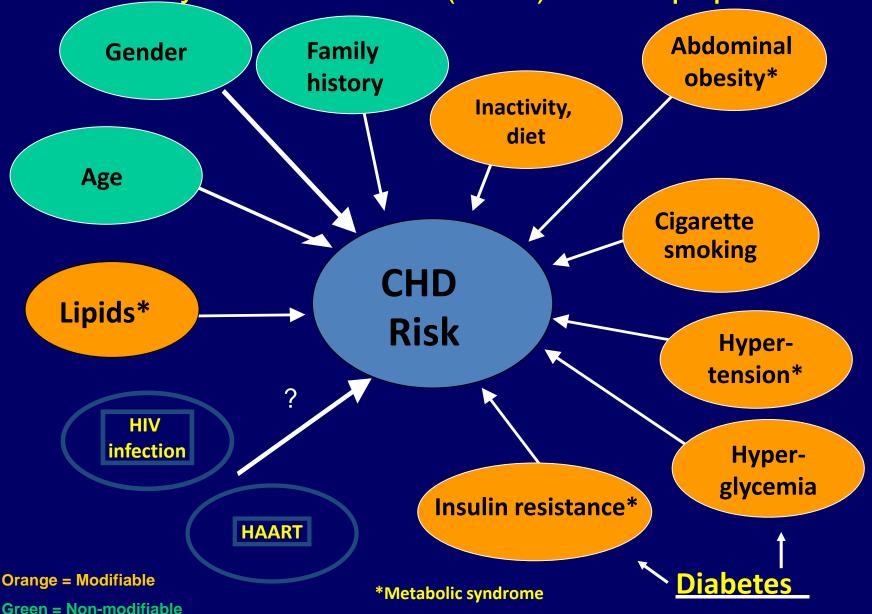

Carotid Intima-Media Thickening (IMT) increases on ART

Stein J et al, *J Am Coll Cardiol*. 2014;63(12_S): CROI 2014;Abstract A1322

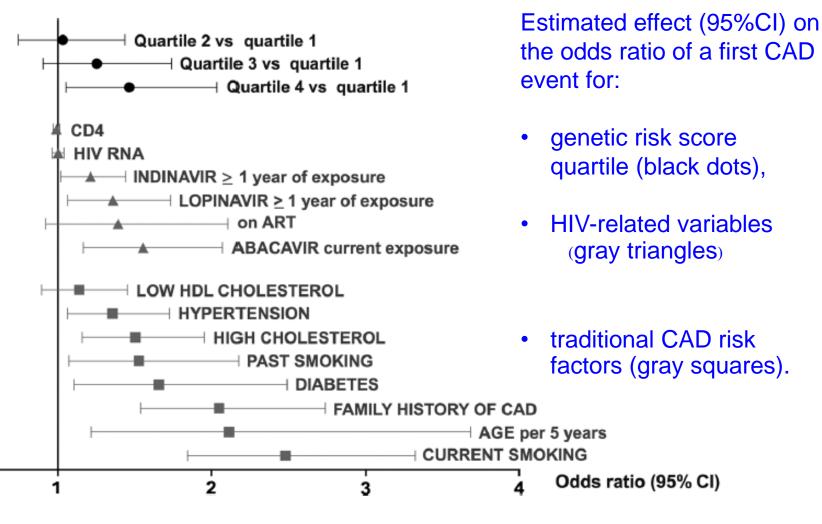
Blood Vessel Inflammation in HIV

Dyslipidemia Management

- Lifestyle modifications
- Switch ART (e.g. LPV/r to ATV/r)
- Lipid Lowering drugs
 - Statins for low LDL
 - Fenofibrates, fish oil, niacin for elevated TGs
 - May be less effective in HIV (Silverberg Ann Int Med 2009)


Insulin resistance

- Increased incidence in untreated HIV
- ART direct and indirect
 - Pls (via inhibition of glucose transporter GLUT4)
 - tNRTIs via mitochondrial toxicity
 - via regional adipose tissue changes
 - inflammation, adipose FFA dysregulation
- HbA1c may underestimate DM in HIV
- Manage like HIV-uninfected
 - lifestyle, metformin


Insulin Resistance and Type 2 Diabetes in HIV-Infected Children

- Prevalence in adults 10-20%
 - Increase prevalence in patients receiving HAART with lipodystrophy¹
- Incidence in children is much lower
- However, 19% of children receiving PI had impair OGTT²

Traditional factors important are contributors to coronary heart disease (CHD) in HIV populations

Contribution of risks factors for CAD in HIV-Positive Persons

Kenya CVD/HIV Integration Pilot Biological CVD Risk Factors and Length on ART

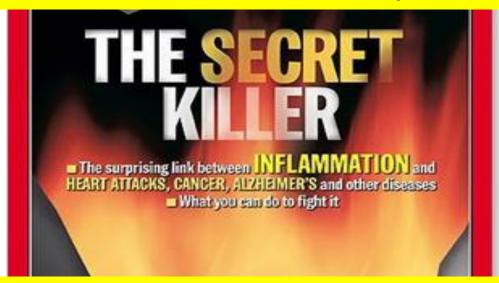
			Length on ART	
Variable	_	<1 year	1 – 3 years	> 4 years
Blood pressure		(n=92)	(n=198)	(n=115)
	Normal	87%	74%	76%
	High	13%	26%	24%
ВМІ		(n=92)	(n=198)	(n=115)
	Normal	78%	74%	78%
	High	22%	26%	22%
Waist Circumference		(n=92)	(n=198)	(n=115)
	Normal	84%	86%	79%
	High	16%	14%	21%
Random blood sugar (RBS)		(n=43)	(n=117)	(n=80)
	Normal	98%	98%	99%
	High	2%	2%	1%
Total cholesterol		(n=39)	(n=118)	(n=76)
	Normal	90%	68%	72%
	High	10%	32%	28%

Nigeria CVD/HIV Integration Pilot Findings

- Most common risk factors were:
 - age >40years (25.7%)
 - male sex (25.9%)
 - overweight/obese (21.8%)
 - blood pressure >140/90 mmHg (15.2%)
- Linear relationship found between the mean levels of serum total cholesterol and duration on ART

Total Cholesterol							
Duration on ART	N	Mean	p value				
< 1Yr	33	3.93					
1-<3Yrs	52	4.49	0.02				
>=3Yrs	67	4.54					

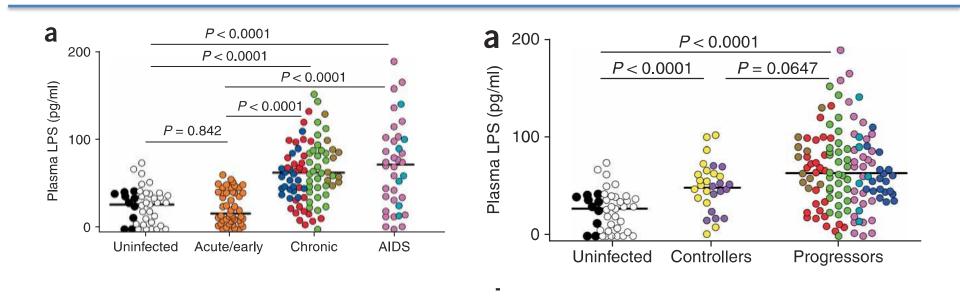
Non-AIDS defining events similar or possibly higher in non-US settings


	Gabarone	, Botswana	Nashville, TN, USA
	Crude/ 1000 PY	Standardized age, sex/ 1000 PY	
NADE	10	18.7	12.4
CVD	5	8.4	5
Renal	2.2	2.4	3
Hepatic	0	0	4
Malignancy	2.8	8	0.5
NADE Mortality	12/18 (67%)		3/25 (12%)

Unanswered Questions

- What role does HIV-associated metabolic syndromes have in causing co-morbidities?
- Will HIV-infected children have increased, premature atherogenesis and CVD?
- Are persons in LMIC are similar, or higher risk?
- Do HIV-infected patients need more aggressive management of their chronic inflammation, CVD risk?

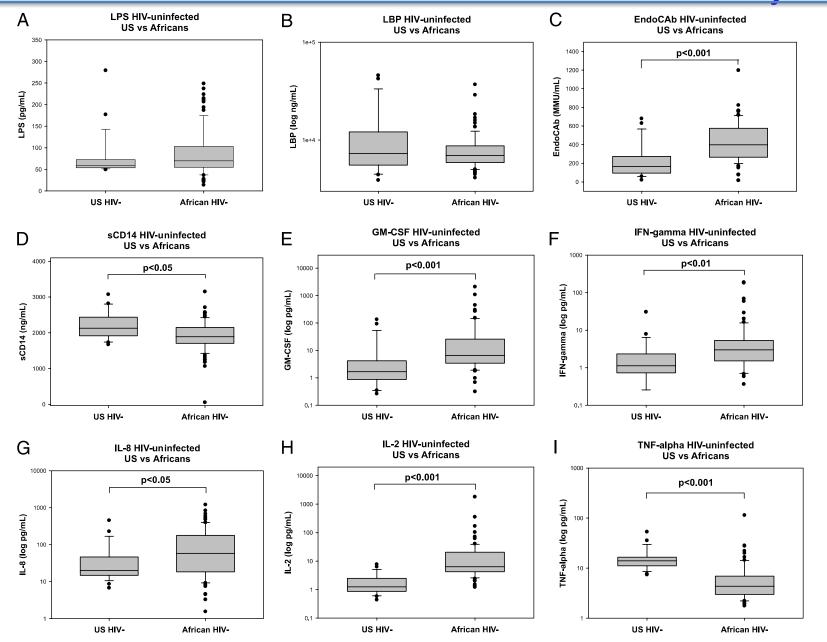
US Populations are not the only ones inflamed!


HIV AND INFLAMMATION IN NON-US SETTINGS

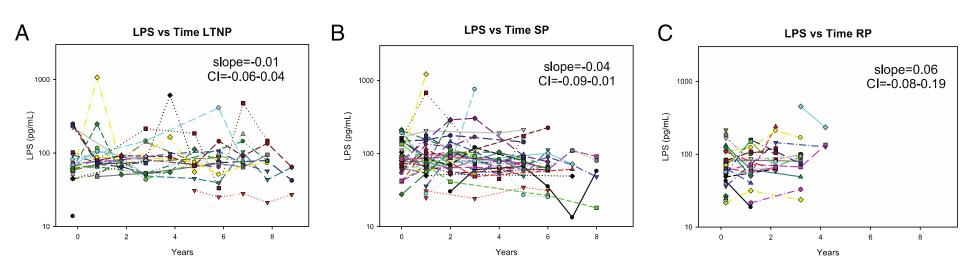
Markers of inflammation: mixed results

Association of inflammatory markers and HIV outcomes- data largely from high income settings

- Treated HIV-infected 50-100% higher IL-6 than matched HIV-uninfected adults (Neuhaus JID 2010)
- IL-6 independently associated with all-cause mortality (INSIGHT SMART- Kuller PLOS Med 2008)
- sCD14 associated with all-cause mortality (INSIGHT SMART Sandler JID 2011)
- sCD163 associated with coronary artery inflammation/athersclorosis (Burdo JID 2011)
- Activated T cells associated with morbidity and mortality but less so than soluble markers (Hunt AIDS 2011)


Microbial Translocation and HIV progression

Study suggesting markers of microbial translocation (LPS, endoCAB, sCD14) associated with HIV disease progression


Small Sample Size, US population, cross-sectional study, not adjusted for any covariates

Baseline Levels of Microbial Translocation Markers Differ Between African and U.S. HIV-Uninfected Subjects

Redd et al., PNAS, 2009

Microbial Translocation and HIV in Uganda

No significant relationship of markers to HIV disease progression among LTNP, SP, RP

NWCS 319: The Association between
Nutritional Status, Microbial Translocation,
Inflammation and Soluble and Cellular Immune
Activation Biomarkers and Highly Active Antiretroviral Therapy (HAART) Outcomes in
Resource-Limited Settings using A5175 data

NIH R01 AI 080417

NWCS319 Methods

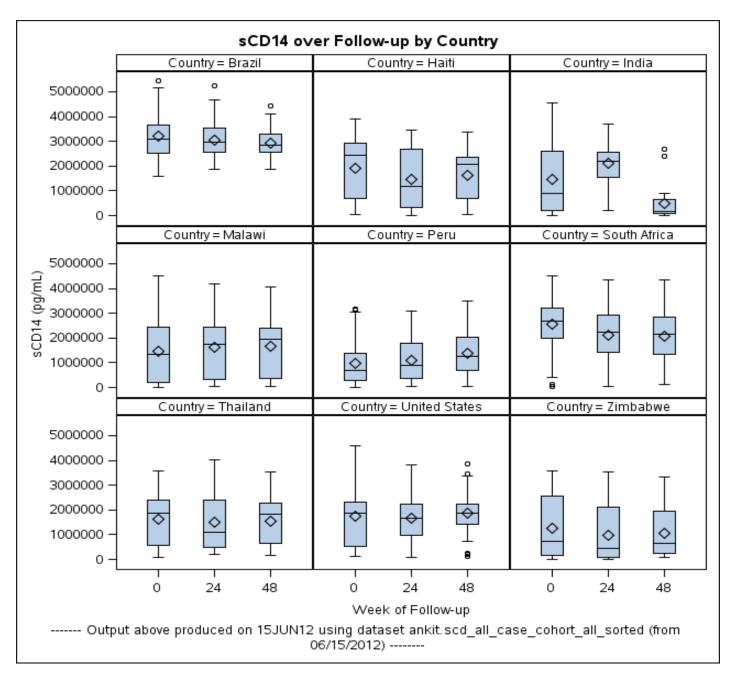
- Nested case-cohort study within ACTG PEARLS randomized trial of 1575 HIVinfected treatment-naïve adults in 9 countries (PLoS Med 2011).
 - Malawi, South Africa, Zimbabwe, Haiti, Peru,
 Brazil, Thailand, India and US
- A random sub-cohort sample of 30 HIV infected treatment-naïve adults were selected from each country (sub-cohort size: 270)
- Primary endpoint (cases): WHO stage 3/4 event or death by 96 weeks

Biomarkers analyzed in NWCS319

Markers of infection/inflammation

C-Reactive Protein

Microbial translocation markers


- Soluble CD14 (sCD14)
- EndoCab (IgM)
- Lipopolysaccharide (LPS)

<u>Plasma cytokines</u>

- Interferon-gamma (INF-Gamma)
- Tumor necrosis factor alpha (TNF-alpha)
- IL-6
- IP-10
- IL-18

<u>Activated T-Cell Markers</u>

- CD4+/DR+/38+
- CD8+/DR+/38+

Novel therapeutic agents need study in non-US settings

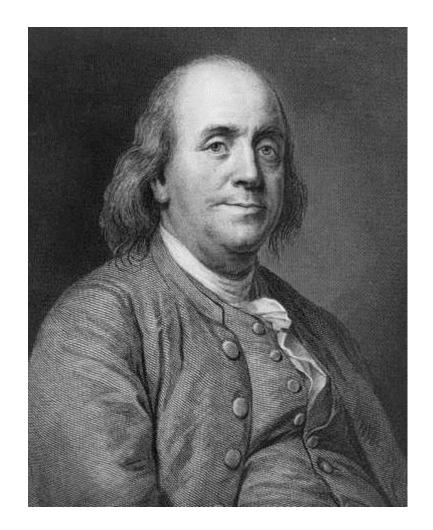
Phase I

Sevelemer (antiLPS), anti PD1 Ab, anti IL-6 Ab, anti IFN alpha AB, sirolimus

Phase II

Statins, ASA, Cox-2 inhibitor, methotrexate, chloroquine/hydroxychloroquine, probiotics, rifaximin, acyclovir, ACE/ARBs, mesalazine, IL7

Many unanswered questions


- What are the best approaches to manage HIVassociated metabolic complications and CVD risk in non-US settings
- What is the safety and efficacy of therapies that reduce inflammation and/or are immunomodulatory in the diverse non-US settings
 - Trials of Statins, ASA, anti-inflammatory not just pertinent to US/high income settings

How to Beat Metabolic Complications & Inflammation

- Use ARVs that have less metabolic complications
- Continue HIV medications. Stay undetectable
- Don't start smoking, Stop smoking if you do
- Maintain normal weight
- If overweight, lose at least 5-10% of body weight
- Exercise
- Have a healthy diet
- Cut down on alcohol, avoid drugs

"An ounce of prevention is worth a pound of cure"

Benjamin Franklin

Acknowledgments

Ujala Foundation

Gilead Foundation